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Figure 1: HoloGarment enables 360° novel view synthesis of real-world garments in images and
videos.

ABSTRACT

Novel view synthesis (NVS) of in-the-wild garments is a challenging task due sig-
nificant occlusions, complex human poses, and cloth deformations. Prior methods
rely on synthetic 3D training data consisting of mostly unoccluded and static ob-
jects, leading to poor generalization on real-world clothing. In this paper, we
propose HoloGarment (Hologram-Garment), a method that takes 1-3 images or
a continuous video of a person wearing a garment and generates 360° novel views
of the garment in a canonical pose. Our key insight is to bridge the domain gap
between real and synthetic data with a novel implicit training paradigm leveraging
a combination of large-scale real video data and small-scale synthetic 3D data to
optimize a shared garment embedding space. During inference, the shared embed-
ding space further enables dynamic video-to-360° NVS through the construction
of a garment “atlas” representation by finetuning a garment embedding on a spe-
cific real-world video. The atlas captures garment-specific geometry and texture
across all viewpoints, independent of body pose or motion. Extensive experiments
show that HoloGarment achieves state-of-the-art performance on NVS of in-the-
wild garments from images and videos. Notably, our method robustly handles
challenging real-world artifacts — such as wrinkling, pose variation, and occlu-
sion — while maintaining photorealism, view consistency, fine texture details, and
accurate geometry. Visit our project page for additional results.

1 INTRODUCTION

The rise in online retail, virtual try-on, and digital fashion design is driving the demand for high-
quality digital garment visualizations. While images and videos offer glimpses of a garment from
various angles, they fall short of providing a full 360° representation — one that is independent
of the wearer and free from occlusions or wrinkles. Manually acquiring such 360° views of real
garments is highly impractical, since capturing dense multi-view data is costly and time-consuming.



Therefore, there is strong interest in discovering an automatic method to generate high-quality, high-
fidelity novel views of garments from 2D images and videos.

This is a challenging task, as real-world garments are inherently complex, containing deformations,
occlusions, and pose variations when worn. Existing methods for novel view synthesis (NVS) of
general objects (Gao et al., 2024; [ Xiang et al., 2024) only handle a fixed number of input views
and are constrained to static and unoccluded objects in fixed poses. As a result, these approaches
perform poorly on real-world garments and do not handle an arbitrary number of input views, such
as from a video. While some methods handle finetuning on video (Wang et al.,|2019;|Zakharov et al.,
2019), they are prone to overfitting to the shape and appearance of the subject in the input frames.
As aresult, finetuning with existing methods on a dynamic garment video containing self-occlusions
and deformations fails to generate unoccluded, static novel views of the standalone garment.

Another challenge is that currently available 3D garment datasets (He et al., [2024; |Li et al., 2023;
Zhu et al.| [2020) are synthetic, which limits their size, diversity, and realism. On the other hand,
real 2D garment data, images and videos, are abundantly available online, but are missing ground-
truth 3D representations. As such, past works (Su et al.| [2020; |Gao et al.| 2023} |Sarafianos et al.|
2024; Bang et al., 2021; [Lim et al., 2023} [Korosteleva & Leel 2022; He et al., |2024; [Richardson
et al.,[2023) often leverage purely synthetic garment data, tending to overfit to simplistic shapes and
patterns and generalizing poorly to diverse garment shapes and textures in the wild.

To overcome these limitations, we seek to answer the questions: (1) Is it possible to train a real-
world garment NVS model by leveraging abundant real-world 2D data, even in the absence of
paired ground-truth 3D assets? (2) In contrast to sparse-frame conditioning, can dense frames from
a dynamic video sequences be leveraged to learn a robust and geometrically accurate garment rep-
resentation for NVS?

In this paper, we propose HoloGarment, a video diffusion model for garment NVS from images
and videos of in-the-wild dressed humans. Our key insight is a novel implicit training paradigm,
where two or more distinct training tasks indirectly train a model to perform the target task for which
ground truth data is not available. Using a combination of real 2D data and synthetic 3D assets,
our method learns a shared garment embedding space between both domains that enables real-world
garment novel view synthesis. In doing so, we bypass the limitations of synthetic-only 3D datasets to
handle challenging real-world garment images and videos. Furthermore, we introduce the notion of
a garment ““atlas”, a finetuned garment embedding optimized on a specific dynamic video featuring
a person wearing the garment. The “atlas” bridges the gap between finetuning (2D) and inference
(3D) modalities, enabling the novel task of video-to-NVS generation, as well as eliminates the
need for arbitrary input view selection.

Our experiments showcase HoloGarment’s capability to generate high-quality, high-fidelity 360°
novel views across a variety of garment types, including tops, dresses, jackets, rompers, and pants,
even those containing occlusions, pose variations, and deformations. We further quantitatively and
quantitatively demonstrate that our method achieves state-of-the-art results compared to related
methods.

2 RELATED WORK

Novel View Synthesis with Diffusion Models Novel view synthesis refers to generating novel
object views from limited observations, such as images. A common framework involves training
a diffusion model with 3D datasets. Several methods adopt this paradigm by finetuning pretrained
text-to-image diffusion models (Gao et al., 2024; |Shi et al.| [2023b; [Wang & Shi, 2023} [Liu et al.
2023bj [Shi et al., 2023a; [Liu et al., 2023c) or video diffusion models (Zhou et al., 2025; Wang
et al., 2023 [Kwak et al.,2023). However, these approaches are constrained by their reliance on 3D
data, which limits their ability to handle real-world images effectively. Several works have explored
using 2D diffusion priors to enhance 3D consistency (Poole et al.| |2022; [Lin et al., 2023} |Shi et al.|
2023b), but do not tackle cases where input views contain incomplete information (i.e. occlusions)
or inconsistencies (i.e. deformations, pose changes). Therefore, existing NVS approaches cannot
handle diverse garments in complex and dynamic real-world scenarios. In this work, we address
this challenging case directly by training a video diffusion model implicitly on real 2D videos and
synthetic 3D assets. This training strategy enables our method to robustly generate consistent multi-
view images of real-world garments.



3D Garment Reconstruction Related to the task of garment novel view synthesis is 3D garment
reconstruction, which aims to recover the 3D geometry of a garment in an image. One avenue
of garment 3D reconstruction methods explores the estimation of 2D sewing patterns (Bang et al.|
2021; |[Lim et al., 2023} Korosteleva & Lee| 2022} |He et al., [2024; |Liu et al., 2023a), which pro-
vide a foundation for realistic garment modeling by leveraging flat patterns that can be draped into
the person’s 3D structures. However, these methods often focus solely on representing geometry,
neglecting to preserve texture details. Other recent methods focus on texture estimation by utiliz-
ing template garment meshes to achieve better realism in garment representation (Su et al., 2020;
Richardson et al.,[2023} Sarafianos et al., 2024; |Gao et al.,[2023). A major limitation of these meth-
ods is their reliance on limited synthetic 3D garment datasets, including DressCode (He et al., [2024)
and GarverseLOD (Luo et al., [2024)), which also do not include ground-truth textures. As a result,
these methods do not generalize well to real-world garment inputs. In contrast to these methods, our
approach eliminates the reliance on purely synthetic data, input meshes, and complex templates.

Subject-Specific Finetuning Subject-specific finetuning, or personalization, refers to finetuning a
pre-trained generative model to produce outputs of a specific subject. Notably, DreamBooth (Ruiz
et al.,|2023)) customizes text-to-image diffusion models to generate images of a specific subject using
a specialized token. Other works (Wang et al., 2019; |Zakharov et al.,|2019) customize generative
video models to produce videos of a specific subject by training in a few-shot manner. Similarly,
this paradigm has been extended for human identity preservation in various other diffusion model
applications, such as try-on (Zhu et al., 2024) and human animation (Karras et al., 2023). To the
extent of our knowledge, subject-specific finetuning has not been applied to garment identity specifi-
cally, which comes with unique challenges. One specific limitation is that current subject-finetuning
methods tend to overfit to the pose and shape of the target subject. As such, existing methods will
replicate the motion, occlusions, deformations, and wrinkling of a dynamic garment video that is
used for finetuning. This is undesirable for synthesizing a static video of a dynamic garment in
an unoccluded, canonical A-pose. We address this by explicitly disentangling animation and spin
motion via split temporal blocks in our network, while still sharing the same garment appearance en-
coder. As aresult, we are able to finetune a garment-specific embedding on a dynamic garment video
and still be able to generate 360° novel views of the garment in a static pose, without overfitting to
the original dynamic motion.

3 PRELIMINARIES

In this section, we provide background on diffusion models and transformer diffusion models, in-
cluding the video transformer diffusion model (Karras et al., [2024), which is the backbone of our
method.

Diffusion Models: Diffusion models are a class of generative models capable of synthesizing high-
fidelity data, particularly images and videos (Sohl-Dickstein et al., 2015} |Song & Ermon, 2019;|Ho
et al., [2020; [Song et al., 2020; [Dhariwal & Nichol, 2021). In the forward process, the data (e.g.
image or video) is transformed incrementally into pure Gaussian noise over a discrete number of
steps. Then, a diffusion model (typically a UNet) is trained to predict the reverse process, which
iteratively denoises the Gaussian noise back into a clean data sample. To be precise, at timestep
t, diffusion model €y with parameters 6 predicts noise ¢; added to the noisy data sample z;. With
conditioning signals ¢, one diffusion timestep is defined as:

gt :eg(zt,t,c) (l)

From the predicted noise, the denoised data sample 2;_; can be estimated. The diffusion model is
optimized by the following objective function:

L= lee —eo(z,t,0)lI3 )

Video Diffusion Transformer Models: While conventional diffusion models often leverage a U-
Net backbone, the diffusion transformer (DiT) (Peebles & Xiel 2022) model replaces this with a
Transformer architecture, leading to superior scalability and performance. Fashion-VDM (Karras
et al., [2024) extends DiT into a video model with temporal blocks (e.g. 3D convolutions and tem-
poral attention layers) and progressive temporal training. Paired with parallel UNet encoders to
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Figure 2: Architecture. Given an input garment image I, and a driving pose sequence (J2p, J3p),
HoloGarment generates a video of the garment following the driving poses. The VDM operates
in two distinct modes — animation (solid orange line) and novel view synthesis (dotted blue line)
— depending on the input pose sequence. The UNet contains two separate sets of spatial temporal
blocks (Blattmann et al., |2023)) — one set for task 1 (orange) and one set for task 2 (blue). Only
one branch is active at a time. All other spatial layers are shared between the two tasks. The noisy
input frames z;, input garment I, and driving 2D poses J»p are encoded by separate UNet encoders
into f,, fr,, f7,p, while the garment pose .J, and 3D driving pose sequence J3p are encoded into
fu1,5 f15 by asingle linear and 4 dense layers, respectively. Garment features fi, f, are concate-
nated into f,. Inside of the DiT blocks, the garment features f, are cross-attended as keys and values
with f., while f,,, f,, are concatenated with f.. The final noisy latent features f, are decoded
by a UNet decoder to obtain z;_1.

disentangle person and garment conditioning signals (Zhu et al., |2023)), Fashion-VDM achieves
superior performance for video try-on.

4 METHOD

Given 1-3 images I, of a garment g and a driving pose sequence J = (Jap, J3p) represented

in 2D and 3D, HoloGarment generates novel garment views V, following the driving poses. In
this section, we introduce our model architecture (#.I) and implicit training strategy with real and
synthetic garment data (4.2). Then, we describe how this unlocks image(s)-to-360° novel view
synthes, as well as video-to-360° novel view synthesis capabilities via finetuning a garment
“atlas” (4.4).

4.1 HOLOGARMENT

At its core, our method consists of an image- and pose-conditioned video diffusion model (VDM)
with trainable parameters 6. Its architecture (Figure [2) builds upon the video transformer diffusion
model proposed in Fashion-VDM (Karras et al., [2024). However, it does not include any person
image representation and the driving poses are encoded in both 2D and 3D. Our VDM addition-
ally implements two identical sets of temporal blocks to separately handle video motion and 3D
spin motion. We describe these adaptations in further detail below. Additional architecture and
implementation details are provided in the supplementary material.
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Figure 3: Implicit Training Paradigm A video diffusion model (VDM) is trained to generate either
a garment animation given dynamic driving poses (solid orange path) or 360° novel views given
static spin driving poses (blue dotted path). To better disentangle output motion styles, the VDM
operates with parameters 0o for animation and with parameters O, for novel view synthesis.
Parameters 0y, and O, are shared except for their temporal blocks, which are distinct. By training
on both real 2D data and synthetic 3D data, the VDM implicitly learns to generate canonical 360°
novel views from 1-3 input images of real-world garments, without paired real-world 3D data.

Garment and Pose Conditioning: Given a noisy video z, at diffusion timestep ¢, a UNet encoder
&, encodes z; into features f,. Similarly, the conditional inputs — garment image(s) I,, garment
pose(s) J,, and driving poses (J2p, J3p) — are encoded by their respective encoders £, to compute
features: &1, (Iy) = f1,,€5,(Jg) = [1,,E0.5(J2D) = fijop €13 (J3D) = f15,- Mathematically,
at timestep ¢, the VDM performs one denoising step to recover noise é;.

ét :VDMG(ztvtafmfj) (3)

where fg = f[g @fjg and fj = szD @fJSD.

Inside the VDM, these conditional features are processed in the VDM via transformer blocks
(DiT (Peebles & Xie| [2022)). Pose features f; are spatially-aligned with f., so they are concate-
nated channel-wise before self-attention. Meanwhile, the non-spatially aligned garment features f,
and noisy video features f, are cross-attended. In this manner, the garment features are implicitly

warped to their target locations according to the driving poses (Zhu et al.| 2023).

Disjoint Temporal Blocks: To effectively disentangle dynamic and static spin motions, we im-
plement our VDM with two identical, disjoint sets of temporal blocks. Each set consists of 3D-
convolution, temporal attention, and temporal mixing blocks (Blattmann et al., 2023). One set
is trained only on batches of real-world images and videos Dy, and the other is trained only on
batches of static spin renderings of 3D garment assets Dg,in. To specify which temporal blocks are
activated, we refer the VDM parameters as 6., when the D,.,j-specific temporal blocks are activated
and Oy, when the Dypip-specific temporal blocks are activated. Note that all non-temporal model
parameters are shared between 6y and Ogyin. Disjoint temporal blocks allow the VDM to better
synthesize motion in two modes — dynamic or static spin — depending on the which set of temporal
blocks are activated.




4.2 IMPLICIT TRAINING WITH REAL AND SYNTHETIC DATA

To learn photorealistic garment novel view synthesis without real-world paired data, we formulate
a novel paradigm of implicit training to learn a garment embedding space F from both real 2D
and synthetic 3D data. Implicit training leverages two or more related tasks for jointly training a
model to perform a desired task. In contrast to joint training (Ho et al.l [2022), where ground-truth
task-specific data is supplemented with similar, non-task-specific data, an implicit training strategy
leverages solely non-task-specific data to learn the target task.

We postulate that if each task in implicit training offers part of the necessary learning for the desired
task, then these tasks together can provide the full scope of necessary learning. In this case, the
desired task is 3D-consistent novel view synthesis from real-world garment images, and the training
tasks are (1) garment animation using real image and video data D;., and (2) novel view synthesis
using synthetic 3D data Dyp,. Garment animation with real data trains the model to handle the
desired input style — diverse, real-world garments, even under challenging conditions, like occlusions
and wrinkling. Novel view synthesis with synthetic 3D data trains the model to generate the desired
output style — unoccluded, static 360° views (spin videos) of garments.

As shown in Figure[3] we train our VDM by alternating batches x.. from both datasets:

real = (Vg Is, Jg, JU) ~ Diea (4)
Tspin = (V;pm> I;pm’ Jg7 JSpm) ~ Dspin )

During training, the VDM trains different temporal parameters for handling dynamic motion and
static spin motion. For dynamic batches ., the VDM operates with 6., and for spin batches
Zspin» the VDM operates with 6y, (Section . In this way, disjoint sets of temporal blocks are
separately optimized for the different motion styles.

After encoding the conditional inputs,

e = VDMy,, (2t t, f _Zf"‘l’ f jr'eal) Treal ~ Dreal (6)
¢ = \pi i

VDM@spin (zta t, f;p n7 f]sp n) Lspin "~ Dspin
Recall from Section S = E,(IF) and foP — £, (IP™). Let F be the garment encoder’s
(£4) embedding space for all garments g ~ G. Then,

Fe I ~ Fo )

Thus, real and synthetic garment embeddings share an embedding space F, which is optimized for
both sets of model parameters (Oreal OF spin). This implies that both input garment styles (real and
synthetic) are compatible with both output motion styles (dynamic or static spin). Critically, this
property enables HoloGarment to mix and match input garment styles with output motion styles.

4.3 REAL-WORLD GARMENT IMAGE(S)-TO-360° GARMENT

Our implicit training approach enables us to train a robust garment embedding space Fi; on diverse,
large-scale garment video data that is also compatible with the novel view synthesis task. As a result,
we can accomplish the desired implicit task of real image-to-360° novel view synthesis. Given a
real garment image /, ;eal (task 1) and static spin pose sequence in a canonical A-pose J*™" (task 2),
HoloGarment generates static 360° novel views of the input garment. During inference, the VDM
operates with parameters 0y, and denoises noisy frames z; via iterative noise prediction:

& = VDMGSP;H (Zt; t, f;eal7 f;Pin) (8)

Recall that f;e“l ~ Fy (Eq. IZI) is compatible with both 0.y and 6y, Therefore, our trained video
diffusion model VDMy,, generates consistent novel views of the real-world input garment style of
task 1 in the output motion style of task 2: static, a-posed, and without occlusions, deformations, or
wrinkling.



4.4 VIDEO-TO-360° GARMENT VIA ATLAS FINETUNING
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Figure 4: Garment Atlas Finetuning HoloGarment en-
ables video-to-NVS by finetuning a garment-specific em-
bedding, or “atlas”, on a real-world video. By utilizing this
atlas during inference, HoloGarment generates photorealis-

tic 360° novel views of the garment.

The garment atlas finetuning strategy is shown in Figure || Initially, fuuas is randomly initialized
with same the shape as f;, the non-optimized garment embeddings. Then, after freezing all other
model parameters Orcal, fadas is finetuned on a specific garment video V;, for M iterations. Refer to
Algorithm [T|for additional details.

During inference, faias replaces the original garment embeddings f,

€ = VDI\/I&pin (%t5 T, fatlas, f;piﬂ) ©)

Algorithm 1: Garment Atlas Finetuning on a Dynamic Garment Video

Input: Vgreal: Input dynamic garment video
Qutput: f,,s: The finetuned garment embedding.
Initialize:

o Freeze all parameters 6

® faias < random embedding of shape f,
fori =11t M do
Sample frames v, ~ V!
Sample timestep ¢ ~ Uniform(1,T’)
Sample noise ¢; ~ Gaussian(0,])
Compute poses (J52!, Jieal) from v,
Compute pose embeddings f;

z; < AddNoise(vy, €, 1) > Get noisy frames

€ < VDMy, (2, t, faas, f5) > Predict noise using VDM

L=|é—el3 > Compute MSE loss

fatlas < Update(faas, £) > Update garment atlas
end

5 EXPERIMENTS

In this section, we first describe our datasets and evaluation metrics (5.2). Then, we evaluate
our method on image-t0-360° (5.3) and video-to-360° (5.4) novel view synthesis (NVS), demon-
strating quantitative and qualitative improvements over related methods (5.5) and ablated versions
of our method (5.6). We also include garment animation results in the supplementary material.
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Figure 5: Qualitative Comparisons. HoloGarment demonstrates superior preservation of garment
appearance, realism, canonical pose, and multiview consistency, as well as robustness to occlusions,
compared to related works and the ablated versions.

5.1 DATASETS

We train our model using a combination of: (1) Real-world fashion images and videos: 17M
crawled garment images and 52K garment videos. We additionally use the UBC Fashion Video
dataset (Zablotskaia et al., [2019), containing 500 train and 100 test videos. (2) Synthetic 3D gar-
ment assets: 8,473 unique garment assets, combination of turboquid @), objaverse (Deitke et al.,
[2022), and online crawling. For each 3D garment, we render 32 views covering one full 360° orbit
around the object center. Each image and video frame [ is preprocessed using an in-house equiv-
alent of Graphonomy to compute the corresponding 2D person keypoints Jap,
garment segmentation I, and 2D pose of the garment image .J,;. Each 2D pose Jop is further pre-
processed as a heat-map representation that is spatially-aligned with 1. Mediapipe (Lugaresi et al.,
is used to compute 3D person keypoints J3p. During evaluation, each input pair consists of 1
or 3 real-world images or frames form a held-out dataset similar to (1) and a randomly selected pose
sequence from (2), covering one full 360° spin.

5.2 EVALUATION METRICS

We evaluate our method based on garment fidelity, multi-view consistency, and 3D realism. To
measure garment fidelity, we compute the Fréchet Inception Distance FID (Heusel et al.} 2017) and
CLIP (Radford et al., [2021)) scores between the input garment images and the predicted garment
images. To evaluate multi-view consistency and overall similarity to ground-truth 3D garments,
we compute the Fréchet Video Distance (FVD) (Unterthiner et al., 2018) and structural similarity
(SSIM) between ground-truth rendered 360° spin videos and the output frames.

5.3 GARMENT IMAGE-TO-360°

We showcase qualitative results from our image-to0-360° NVS method in Figure [7] HoloGarment
synthesizes consistent and realistic novel views in a canonical target pose from single-view (top row)
or multi-view inputs (middle row), even in the presence of occlusions, pose changes, and wrinkling
in the input images. Moreover, HoloGarment handles a variety of garments, including tops, dresses,
jackets, rompers, and pants.

5.4 GARMENT VIDEO-TO-360°

To synthesize 3D-consistent 360° novel views of a real-world garment in a dynamic video, we
finetune a latent garment embedding, which we call a garment “atlas” fy,s, on a specific 128-
frame real-world video for 500 iterations with batch size 32 and constant learning rate of le—3.
By only optimizing for fu.s and activating only the video-specific temporal blocks of our model
Ospin, We prevent undesired overfitting to the motion of the input video. We showcase qualitative
examples of our video-to-360° NVS method in Figure [6and the bottom row of Figure[7] Our atlas



\ Custom Dataset UBC Dataset

Method | FID| CLIPY FVD| SSIMt FID| CLIPt FVD| SSIM?t

Garment3DGen | 320  0.631 2477 0.002 310  0.638 2534  1.72e-5
gemini 25 | ys6 0836 - 0700 137 0880 - 0742

Flash Image

SVC 130 0855 1109 0767 200 0835 1144 0745
CAT3D 152 0861 1073 0578 186 0798 1137  0.625
OUTSyigeo 131 0890 1088 0730 128 0872 1053  0.743
ourssp 144 0871 968 0739 147 0847 880  0.754
ours 128 0872 875 0729 127 0881 880  0.771

Table 1: Quantitative Comparisons. HoloGarment outperforms Gemini 2.5 Flash Image (Google,
2025)), Stable Virtual Camera (SVC) (Zhou et al., [2025)), Garment3DGen (Sarafianos et al., 2024),
and CAT3D (Gao et al.| |2024) on all metrics. Our method also achieves competitive results on
both garment fidelity (FID, CLIP) and 3d garment realism (FVD, SSIM) metrics when compared to
video-only and 3D-only training.

finetuning strategy enables HoloGarment to consolidate an arbitrary number garment views, poses,
and deformations into a unified 360° garment representation.

5.5 COMPARISONS TO STATE-OF-THE-ART

We compare our method to image-to-3D (Gar-
ment3DGen (Sarafianos et al., [2024) and
CAT3D (Gao et al., 2024)), image editing
(Gemini 2.5 Flash Image (Google, 2025)),
and camera-controlled video generation (Sta-
ble Virtual Camera (Zhou et all [2025),
Veo3 (Google DeepMind, 2024)) methods. Our
results are presented in Figure[5]and Table 1.

Qualitatively, HoloGarment produces superior
results compared to Garment3DGen, CAT3D,
and Stable Virtual Camera, and achieves vi-
sual quality on par with large, publicly avail-
able models like Gemini 2.5 Flash Image and

Veo3. This is notable given that our model was . . . .
trained on a significantly smaller dataset. Figure 6: Atlas Finetuning Ablation. In single-

view (top row) and multi-view conditioning (mid-
Quantitatively, our approach consistently out-  gle row), poorly chosen input views negatively af-
performs all compared methods across all met-  fect the quality of synthesized views. Atlas fine-
rics on both evaluation datasets (Table 1) Due tuning on video (bottom row) eliminates the de-
to the high computational cost of large-scale pendency on input view selection by consolidat-
evaluation, a full quantitative comparison with ing details from all video frames to improve gar-
Veo3 is reserved for future work. We also omit  ment texture details and multi-view consistency.
the FVD metric for Gemini 2.5 Flash Image
since it is not designed for temporal consis-
tency. Further discussion and implementation details for each method are provided in the sup-
plementary material.

Generated Views

5.6 ABLATIONS

Implicit Training Paradigm: In Figure |5|and Table 1, we demonstrate the benefit of our implicit
video-and-3D training approach. We compare our pretrained base model trained only on video
data (oursyigeo), trained only on synthetic 3D data (ourssp), and jointly trained on video and 3D
data (ours). While training our model on video data alone leads to the great photorealism and
garment fidelity, it fails to enable 3D-consistent motion generation and realistic novel views. Plus,
the synthesized views contain holes where limbs or hair overlap with the garment, because real video
data has occlusions that lead to such holes after segmentation. On the other hand, with 3D-only



training, our model generates highly consistent and realistic garment spins. However, this model
exhibits poor garment fidelity and tends to oversmooth textures and patterns, due to the limited size
and diversity of the 3D dataset. Our jointly-trained model balances the benefits of video training
and 3D training: it maintains garment fidelity and photorealism, while simultaneously generating
consistent, canonical novel views without holes.

Atlas Finetuning: We qualitatively and quan-
titatively evaluate our atlas finetuning strategy. _ Method FID| CLIPT FVD] SSIMT
Figure [6| demonstrates that a poorly-chosen in-  w/o Atlas 134 0.852 538 0.689
put view drastically limits novel view realism.  w/ Atlas 103  0.900 474 0.728
While few-view conditioning improves fidelity,

it is still limited by the quality of the input Typle 2: Atlas Finetuning Ablations. We quanti-
views. On the other hand, atlas finetuning (atively compare 40 results with and without atlas

enables our model to consolidate information  finetuning. Non-atlas results were conditioned on
from an arbitrary number of images, improving 4 single input view.

fidelity and realism. This finding is supported
quantitatively in Table 2. Compared to single-image conditioning, atlas finetuning improves perfor-
mance across all metrics.

6 DISCUSSION

In this paper, we present HoloGarment, a method for synthesizing state-of-the-art novel views of
garments in real-world images and videos. We introduce an implicit training scheme to optimize
a video diffusion model for real-world garment image-to-360° novel-view synthesis (NVS) using
a combination of large-scale 2D garment data and limited synthetic 3D garment assets. We further
propose atlas finetuning, a strategy where a garment embedding, or “atlas”, is finetuned on a dynamic
garment video to enable video-to-NVS capabilities.

Limitations: While our method improves over existing methods, it faces several limitations. Due
to the limited diversity of the synthetic 3D garment dataset, HoloGarment struggles with unusual
garment shapes (e.g. assymmetry or cut-outs). Our model also exhibits some bias towards those
garment categories which are more abundant in the 3D dataset, such as pants and t-shirts. See the
supplementary for qualitative examples. A larger synthetic garment dataset may remedy such issues.
Other future work includes speeding up atlas finetuning (currently ~30 minutes on a single TPU)
and increasing resolution via super-resolution network.
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Figure 7: Qualitative Results. Our method generates 360° novel views of garments from single
images, multiple images, or videos. Additional qualitative results are shown in the supplementary
material.
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