
Supplementary Material

A ARCHITECTURE DETAILS

We show our overall video diffusion model (VDM) architecture in Figure 2. Our model is trained
following v-prediction (Salimans & Ho, 2022), where the model outputs the predicted noise ✏0t at
timestep t, such that z0t�1 = zt + ✏0t. The L2-loss is computed in ✏ space.

Input Preprocessing: The conditional inputs to our VDM are 1 or 3 segmented garment images Ig ,
their corresponding 2D poses Jg , and a sequence of driving 2D and 3D poses (J2D, J3D). In the
case of multiple input garment images, Ig is channel-wise concatenation of the segmented garment
images. Additionally, Ig and its corresponding spatially-aligned 2D poses J2D

g are concatenated
channel-wise.

Conditioning Inputs: The noisy video zt, garment signals [Ig, Jg], and driving 2D poses J2D
are encoded by separate UNet encoders (Zhu et al., 2023) into features fz , fg , fj2D, respectively.
The driving 3D poses J3D are separately encoded by 4 dense layers into features fj3D and re-
shaped to match fj2D. The conditioning input embeddings fg, fj2d, fj3d are processed by the DiT
blocks (Peebles & Xie, 2022) before the UNet decoder. We concatenate the driving pose features,
fj2D and fj3d, with the noisy video features fz . The input garment image and pose features fg are
cross-attended with noisy video features fz , in order to implicitly warp the input garment features
to their target locations according to the driving poses (Zhu et al., 2023), getting warped features f 0

z .

UNet: Similarly to Fashion-VDM (Karras et al., 2024), we add 3D convolution, temporal attention,
and temporal mixing blocks after the two lowest-resolution spatial layers in the UNet encoder and
decoder. However, unlike Fashion-VDM, we duplicate these temporal blocks, such that one set only
processes video batches and the other only processes 3D spin batches. We implement this switch
in the network via conditional network branching. Note that only one branch of temporal blocks is
activated at a time. Finally, a UNet decoder decodes f 0

z into the predicted noise ✏t.

Additional implementation details of our architecture include:

• The kernel sizees of our Conv2D and Conv3D blocks are (3, 3) and (4, 3, 3), respectively.

• Our 8 DiT blocks are implemented with 8 attention heads each and a hidden size of 2048
at feature resolution 32x24.

• Our UNet encoders consist of 4 downsampling CNN blocks. Symmetrically, our UNet
decoders consist of 4 upsampling CNN blocks.

Input(s) Ground Truth HoloGarment

Figure 8: Qualitative Results on Synthetic 3D Garments. HoloGarment generates consistent
360-degree novel views from a single garment view that retain high-fidelity to their corresponding
ground-truth synthetic 3D assets.
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Figure 9: Qualitative Animation Results. HoloGarment generates realistic garment animations
given a garment image and dynamic driving pose sequence.

B TRAINING AND INFERENCE DETAILS

Training: We pretrain our base model without temporal layers on our custom garment image dataset
for 1M iterations with batch size 8 (Karras et al., 2024). Then, we train our full model with temporal
layers for 589K iterations, approximately 3 days, on 16 TPU-v4’s. In this stage of training, we train
jointly with 33% fashion image data, 33% fashion video data, and 33% novel views rendered from
3D garment assets, each with frame count 32 and resolution 512 x 384. For task (2) batches, 3D
garment assets are rendered as 360-degree RGB spin videos, similar to (Gao et al., 2024). However,
different from (Gao et al., 2024), which uses camera position as conditioning, we compute J2D and
J3D for both garment spins and real fashion videos, so that the motion representation is shared.
Plus, 2D and 3D together encapsulate camera pose (Lu, 2018). Finally, we finetune the model for
an additional 50K iterations on 3D data only.

For both pretraining and training, we use an Adam optimizer with linearly decaying learning rate of
1e�4 to 1e�5 over a maximum of 1M iterations. We additionally add independent dropout for each
conditional input with 10% probability per batch. After each forward pass, we compute the L2 loss
on predicted noise ✏t at diffusion timestep t.

Inference: During inference, we use the DDPM sampler (Ho et al., 2020) with 1000 refinement
steps to generate 32-frame videos. For evaluating our full and ablated models, we employ dual
classifier-free guidance (Brooks et al., 2023) with conditioning groups (;, Ig , [J2D, J3D]) and
weights (1, 5, 1).

C COMPARISONS TO STATE-OF-THE-ART DETAILS

Gemini 2.5 Flash Image: We compare our method to Gemini 2.5 Flash Image (Google, 2025) on
garment novel view synthesis. For quantitative evaluation, we generate the front view of each input
segmented garment using the prompt ”Generate a front-facing image of the garment in a-pose and
without occlusions.” As Gemini 2.5 Flash Image is not designed for temporal consistency, we omit
FVD in the quantitative comparison. For qualitative comparisons, we specify the target output angle
of the garment in the prompt. Despite synthesizing high-quality, plausible novel views, Gemini 2.5
Flash Image is not designed for temporally-consistency, and struggles to generate smooth 360° novel
views.

Veo3: We qualitatively compare with Veo3 (Google DeepMind, 2024) frame-to-video functionality
through the Flow app of Google labs using the input segmented garment image as the input frame
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and the prompt “Generate a 360-degree orbit of this garment in a-pose and without occlusions.”
Veo3 generates high-quality, consistent orbits, but over-saturates the garment colors.

Stable Virtual Camera: We evaluate the official implementation of Stable Virtual Camera
(SVC) (Zhou et al., 2025) provided by the authors. We run SVC in single-image video genera-
tion mode on the input segmented garment image, following an orbit trajectory for 32 target frames
and using all other default parameters. In Figure 5, SVC fails to inpaint occluded regions (bottom
row), synthesize plausible novel views (top row) or generate the garment in a canonical a-pose.

Garment3DGen: We follow the official Garment3DGen implementation. Garment3DGen does not
provide a texturing tool, so we use a text-to-texture model (Deng et al., 2025), as suggested by the
authors. We caption each input image using Gemini (Team, 2023), then use FlashTex (Deng et al.,
2025) to add texture to the 3D mesh. From the caption, we also determine the garment type and
select the closest template mesh provided by the authors. As shown in Figure 5, the requirement of
a template mesh severely limits Garment3DGen’s ability to generalize to different garment shapes.
Plus, the generated textures show poor fidelity to the input garment image. In contrast, HoloGarment
is independent of any template meshes or third-party texture generation methods, making it robust
to diverse garment shapes and textures.

CAT3D: For comparisons with CAT3D, we follow the original authors’ single-image implementa-
tion. Figure 5 shows that CAT3D generates a flattened appearance in side and back views. Addition-
ally, as shown in the bottom row, CAT3D is not robust to occlusions or pose variations, reproducing
the input holes and wrinkling. Finally, unlike our method, CAT3D cannot warp the garment into a
desired target pose, replicating the original garment pose.

D ADDITIONAL QUALITATIVE RESULTS

We show additional qualitative image-to-3D, sparse view-to-3D, and video-to-3D results of
our method in Figure 11. We also show qualitative results of our single-view method on

Input Generated Views

Figure 10: Failure Cases. At times, HoloGar-
ment hallucinates pants when the input garment
is top-only (left). In other cases, due to ambigui-
ties in the input (e.g., dress slits, extremely large
occlusions), it may generate an incorrect garment
shape (right).

held-out synthetic 3D garment assets in Fig-
ure 8. Given a single view of a synthetic 3D
asset, HoloGarment synthesizes plausible novel
views that are consistent and retain high fidelity
to the ground truth views.

E GARMENT ANIMATION

In Figure 9, we demonstrate HoloGarment’s
ability to realistically animate real-world gar-
ments given an image and driving pose se-
quence (task 1). Due to the nature of the real-
world image and video data, HoloGarment cre-
ates wrinkling and occlusions when operating
on video data. Although the focus of our work
is NVS, the ability for HoloGarment to per-
form well on the image animation task, is cru-
cial for enabling video-to-NVS finetuning (Sec-
tion 5.4).

F FAILURE CASES

In Figure 10, we show two examples of fail-
ure cases of our method. These include halluci-
nating bottoms for top-only garment inputs and
at times misrepresenting skirts as pants, espe-
cially when a slit is present in the input view.
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Figure 11: Additional Qualitative Results. Demonstrating our method’s capability for 360° novel
view synthesis of garments from a 1-3 input image(s) or a video. Results are best viewed in our
supplementary video.
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